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The stability of cellular convection flow in a layer heated from below is discussed 
for Rayleigh number R close to the critical value R,. It is shown that in this region 
the stable stationary solution is determined by a minimum of the integral 

J o  . - 

where R ( H )  is a functional of arbitrary convective velocity fields which satisfy 
the boundary conditions. For the stationary solutions R ( H )  is equal to the Ray- 
leigh number. H ,  is a given value of the convective heat transport. In  a second 
part of the paper explicit results are derived for the convection problem with 
deviations from the Boussinesq approximation owing to the temperature de- 
pendence of the material properties. 

1. Introduction 
The streamlines of a stationary flow usually reflect in their shape the conditions 

imposed from outside. Cellular motion, however, has the peculiar property that 
its streamlines are confined to domains, so-called cells, which are not determined 
by the exterior conditions. 

From the formal point of view, cellular motion can be characterized as a 
stationary solution of the equations of motion, which is not uniquely determined 
by the given boundary conditions. This indeterminacy is not caused by the lack 
of imposed conditions; rather it can be described by the existence of a bifurcation 
point of the stationary solution in dependence on a parameter of the problem. 
While below a certain critical value of the parameter the boundary conditions 
are sufficient to determine the stationary solution uniquely, two or more sta- 
tionary solutions are possible above that value. In  this case, the criterion of 
stability against disturbances distinguishes the physically realized solutions 
among the class of possible stationary solutions. It may be that this criterion, 
which usually is restricted to disturbances of infinitesimal amplitude, is not 
sufficient to determine the stable solution uniquely. In  general, however, it 
distinguishes a small class of physically realizable solutions out of a large class of 
possible solutions. 

The unusual properties of cellular motion have attracted many investigators. 
The most famous example of cellular motion has become the convection in a 
horizontal layer heated from below. In  this problem the relevant parameter is 
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the temperature difference between the upper and lower boundaries of the layer, 
which in the dimensionless description is represented by the Rayleigh number. 
For the extended literature on this problem, we refer to Chandrasekhar (1961) 
and to a recent review article by Segel (1966). 

In one of the earliest papers on the nonlinear aspects of the convection prob- 
lem, Malkus & Veronis (1958) used the suggestive hypothesis that the property 
of stability of a stationary cellular motion is correlated to the property of maxi- 
mum convective heat transport at  a given Rayleigh number. When a scalar 
function does exist which assumes an extremal value in the case of the physically 
realized solution, the stability analysis can be replaced by variational techniques. 
Hence, the problem of the existence of such a function is of considerable import- 
ance. In the first part of this paper we investigate the conditions under which the 
property of stability of a stationary solution can be derived from the existence 
of a minimum of a scalar function. We will show that such a function exists for 
convection flows of sufficiently small amplitudes. It turns out that this minimum 
principle can be identified in some cases with the principle of maximum con- 
vective heat transport. 

To prove the minimum principle we will restrict ourselves to a special case of 
the convection problem as a model. In  this case, which is introduced in $2, it 
is assumed that the Boussinesq approximation is valid and that the boundary 
conditions are symmetric. In  contrast to the usual treatment, we shall admit a 
nonlinear dependence of the density on the temperature. We shall, however, 
treat the deviation from the linear dependence as a small perturbation. The ana- 
lysis of the problem is based on the expansion of the variables in powers of the 
convection amplitude. This method of solution was introduced for the solution 
of the nonlinear stationary equations by Malkus & Veronis (1958) and was applied 
to the stability analysis by Schliiter, Lortz & Busse (1965). The present work can 
be considered an extension of the latter paper, to which we will refer hereafter 
as I. The proof of the minimum principle is contained in $03 and 4. In $5 we 
complete the presentation of the principle by discussing its general implications. 

The second part of the paper, $5 6 to 9, is concerned with the question of how the 
stability of the stationary solutions, as described in I, is altered by deviations from 
the Boussinesq approximation. We shall assume that all material properties are 
temperature-dependent and treat the deviations from the Boussinesq approxima- 
tion as small perturbations in analogy to the nonlinear terms. Since the equations 
for this problem become rather extended, the discussion will be based essentially 
on the special case introduced in $2, which shows all qualitative features. The 
solution of this problem, as well as a more restricted formulation of the minimum 
principle, is part of the author’s dissertation (1963) to which we shall refer as I1 
for certain details. 

2. The formulation of the problem 
Convective motions in a fluid layer heated from below are described by the 

continuity equation, the Navier-Stokes equations of motion and the heat 
equation. We will use these equations in the Boussinesq approximation in which 
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all material properties are assumed to be constant with the exception of the 
density, whose temperature dependence 

is taken into account in the gravity term only. We assume that the reference 
temperature To in the expansion (2.1) is given by the temperature (Tl+ T2)/2 of 
the static state in the middle plane of the layer where Tl and T2 are the given 
temperatures at the lower and upper boundaries of the layer. In  order to write 
the equations in a dimensionless form, we introduce the thickness d of the layer 
as the length scale and d%-l as the time scale, where K is the thermometric con- 
ductivity. As the scale for the temperature we introduce the difference Tl- T, 
divided by the Rayleigh number R. Thus the momentum equation and the heat 
equation for the velocity vector ui and the deviation of temperature from the 
static state I9 have the following form : 

p = po[l - a(T - To) -P(T - To)2 + ...I (2.1) 

a 
at 

AB+R+, = U j a j e +  -8, I 
ajuj = 0, I 

where the summation convention and the notation aj = a/ax, have been used. We 
assume a system of Cartesian co-ordinates with x, y in the horizontal directions 
and z in the vertical direction opposite to the direction of the gravity force. In 
this system the unit vector A has the components (0, 0 , l ) .  Unlike the conventional 
use of the Boussinesq approximation we take into account the quadratic term 
in the temperature expansion (2.1) of the density. We will consider, however, 

Y = P(T1- T2)/a (2.3) 

as a small parameter. The other dimensionless parameters of the problem are the 

R = agd3(Tl - T 2 ) / v ~  Rayleigh number 

and the Prandtl number Pr = v/K, where v is the kinematic viscosity. To simplify 
the discussion in the following sections we will assume the limit of infinite Prandtl 
number, in which the right side of the first equation in (2.2) can be neglected. In  
a later part of this paper it will be shown that all conclusions remain valid in the 
case of finite Prandtl number. 

Two cases are representative for the various possibilities of boundary condi- 
tions for the velocity vector. At the rigid boundary the velocity vector ui has to 
vanish, while at the free boundary only the normal component of the velocity is 
vanishing, but no tangential stress can be supported. Since we have assumed that 
constant temperatures are prescribed at the boundaries and because we will 
consider symmetric cases only, the boundary conditions of the problem are given 
by 

1 (2.4) 
u = 0, 

u, = a,u,,, = 0 = 0 for free boundaries at z = _+ 4. 
I9 = 0 for rigid boundaries at z = f Q, 

J 
An important consequence of (2.2) in the limit of infinite Prandtl number is 
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that the vertical component of the curl of the velocity vanishes since the corre- 
sponding part of the equations of motion 

A(a,u, - al/ux) = 0, (2 .5 )  

together with the boundary conditions, admits only the vanishing solution. An 
arbitrary velocity field with vanishing divergence and vanishing vertical com- 
ponent of the vorticity can be derived from a scalar function v, 

with the operator ui = 6.v a ?  (2.6) 

si = aiaiiij - iiiajai = (a,a2, a,a2, - AJ, (2.7) 

where, for abbreviation, A, = a:z + has been introduced. 
Eliminating the pressure term we reduce ( 2 . 2 )  to the following equations for 

v and 8: 

a AO-RAZV = SjvajS+ -9.  
at 

Assuming the stationary case with infinitesimal amplitude E of v and y = 0, we 
can neglect the right side of (2.8) and obtain for v = ev(10) the linear equation 

(AAA - RA,) dlO) = 0. (2.9) 

The properties of this equation together with various homogeneous boundary 
conditions are well known; we refer to Chandrasekhar (1961). The variables can 
be separated in this case, 

and stationary solutions exist depending on the boundary conditions for certain 
values of R = R(a). The minimum value of R(a) which we will name R(00) is called 
the critical value because it determines the point at  which the static layer be- 
comes unstable. 

Starting with the solution ev(l0) at R = R(O0) we assume the following expansion 
for the stationary solution of the problem (2.8) for small values of the parameters 
E and y :  

A 2 ~(10) = -a2~(10), (2.10) 

m 

p = O  
U=O 

(2.11) 

We assume that E is a positive parameter, while y may have either sign. The idea 
of the method of solution is to solve (2.8) after introducing expansion (2.11) 
for each power of E and y separately. Hence, instead of the nonlinear problem 
(2.8), a set of linear inhomogeneous equations has to be solved starting with the 
homogeneous equation (2.9). 
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According to the separation relation (2.10) the solution ~ ( 1 0 )  can be written in 
the following general form: 

where 

= c c v n n) 
n 

v, = exp{ik,.r}f(z) 

(2.12) 

(2.13) 

represents the complete system of solutions of (2.9) for R = R(O0). We assume that 
the summation in (2.12) runs through all integers different from zero. The class 
of vectors k, is defined by 

k.A = 0, k.k  = a?. (2.14) 

a, is the value of the wave-number a which corresponds to the critical Rayleigh 
number. 

I n  order for solution (2.12) to be real, we assume k-, = - k, and c-, = Cn. 
As a normalization condition we introduce 

CC,C, = 1. 
n 

(2.15) 

Because of the separation of variables the solutions of the adjoint problem t o  
(2.9) are represented by 

v$ = exp { - ik,. r} f *(z ) .  (2.16) 

The functions f ( z )  and f * ( z )  are determined by (2.9) together with the correspond- 
ing boundary conditions. For the following considerations, however, we do not 
have to use their explicit form. It is convenient to normalize the solution d l O )  

uE(w(~O)AAV(~O)) = 1, (3.17) by assuming 

where the brackets indicate the average over the fluid layer. By this definition 
e2 gives the first approximation to the convective heat transport H = (u,O). 

I n  the next section it will be shown that those solutions among the general 
class (2.12) which correspond to solutions of the nonlinear equations (2.8) in 
the limit of small y and e are distinguished by the fact that a certain function 
of the coefficients c ,  assumes an extremum, or more exactly, a stationary value. 
I n  $ 4  we shall prove that the stability of the solution depends upon whether 
or not the stationary value is a minimum. 

3. The stationary solution 
After introducing the expansion (2.11) into (2.8) we consider terms belonging 

to different powers in y and 8 separately. Eliminating 6' from the equations in the 
same way as has been done for the linear part of (2.8) ,we obtain 
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This set of linear inhomogeneous equations can be solved sequentially. To ex- 
clude the additional arbitrary solution of the homogeneous problem, we choose 
the normalization condition 

(xc, vz A, v(..I> = - %O 
n 

As the necessary and sufficient condition for the solvability of a linear inhomo- 
geneous problem, the inhomogeneity has to be orthogonal to all solutions of the 
adjoint homogeneous problem. Thus the right sides of (3.1) multiplied by the 
functions (2.16) and averaged over the fluid layer have to vanish. Sincef(z) as 
well as f * ( x )  are symmetric functions in x ,  the solvability condition in the case 
of the first equation (3.1) is satisfied when 

ncm = R(01, = 0, (3.3) 

The solutions ~ ( 2 0 )  and w( l l )  can be vmitten in the form 

dZo) = ~c,c,exp{i(k,+k,).r}F(k,.k,,x), (3.4) 
nm 

dll) = I: c, exp {ik, . r) G(z) ,  (3.5) 
n 

since only the scalar products of k-vectors appear on the right side of (3.1). 
We introduce the solutions (3.4,5) on the right side of the second equation in 

(3.1). By multiplying it with w? and averaging, we arrive at  a set of equations with 
running index 1. Since the averaging integral is extended over terms of the hori- 

exp{i( -k,+k,+ ...). r} zontal dependence 

with two, three or four k-vectors in the exponent, the set of equations is given by 

C A(k, . k,, k,. k,, k, . k,) c,c,c,S( - k, + k, + k, + k,) - R(zo)cz) 
k ,  n, m 

+ ey ( I: B(k, . k,) c,c, 6( - k, + k,, + k,) - R(ll)cl) + y2(D - Ho2)) c,. (3.6) 
n,m 

Due to the form of the operators on the right-hand side of (3.1) A and B are func- 
tions of the scalar products between the k-vectors only, and D is a constant. 
B(k,. &) can also be replaced by a constant B, = B( - $a:), since the argument 
of the &function vanishes only when the three k-vectors form an equilateral 
triangle. With respect to two of the k-vectors, say k,,&, A is a symmetric 
function because the solution dZo) has this symmetry. With the definitions 
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In  this form the solvability condition is equivalent to the condition for a station- 
ary value of the following function E of the coefficients cn subjected to the side 
condition (2.15) : 

A’(***jc-1,~1, -..I &‘s {h(#tn) (2-226,,-6-,n)+h,(#,n)}c,c-nctc-, 
n, I 

+ (&J) Bo S tic, en a(k1 + k, + kn) + $7’ C L)c,c+ (3.9) 
n, m, 1 1 

The comparison of the equations 

(3.10) 

with equations (3.8) proves the equivalence, identifying 

= - eZR(2O) - eyR(11) - yZR(O8). (3.11) 

The equivalence is the basis for our conclusion: among the class (2.12) of solutions, 
only those are possible solutions of the equations (2.8) in the limit of small e and y ,  
for which the function E assumes a stationary value under the side condition (2.15). 

A class of solutions which satisfy the solvability condition (3.8) is given by 

clc-l = ... = CNC_*, = 1/(2N) (3.13) 

and corresponding k-vectors k+, . . . , k, which have the property that the scalar 
product between any one of the k-vectors and its two neighbouring k-vectors 
assumes the constant values or. and /3. We will call solutions of this form ‘semi- 
regular’, leaving the term ‘regular’ for the special case a = p. That semi-regular 
solutions satisfy the solvability condition (3.8) can be seen easily if we disregard 
solutions for which any scalar product k, . k, is equal to &a:. Under this condition 
the second term in the set of equations (3.8) disappears, and all equations become 
identical after division by cl. In  $ 7  we shall return to the case when an angle of 
60” occurs between two k-vectors. 

Since the example (3.12) represents an infinite class of possible stationary solu- 
tions, a stability analysis is necessary to  distinguish the physically realized 
solution. In  the next section we will show that the stable solution is characterized 
by the fact that the stationary value of the function E is a minimum. 

4. The stability analysis 

governed by the equations 
Infinitesimal disturbances fi, 0 superposed on the stationary solution v, 8 are 

We have replaced the derivative of 0 with respect to the time by cd because an 
exponential time dependence can be assumed. Because the stationary solution 
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is given in the form of the expansion (3.11) we introduce analogous expansions for 
G,  6 and (T: 

(4.2) 

(T = c. e/cy%@"'. 

p= 0 
v=O 

At lowest order, (4.1) admits only solutions with doe)< 0 according to the linear 
theory, In the case doo) = 0 ,  the equation for G(l0) becomes identical with (2.9) 
for ~ ( 1 0 )  with R = B O O )  and the solution can be written in the form 

In the appendix we will show that it is sufficient to restrict the stability analysis 
to disturbances of this form. The consideration of disturbances with small nega- 
tive values doO) will not alter the conclusion. 

At higher orders we obtain from the system (4.1) a hierarchy of equations 
analogous to the stationary case (3.1). The first of these equations is 

(A3 - RcA2) ( & P O )  + y$ll)) = ~(d ; .  f j ( l O ) a j  A20(10) + 4 v(10)aiA2fj(10) 

+ &O)A2$0)) - y (AzA2$0) - ~('WA, $0)). (4.4) 

By multiplying this equation with the set of function v: and averaging, we ob- 
tain a set of equations for the coefficients En which represents the solvability 
conditions for (4.4). We have to conclude that 

(+lo) = g ( O l )  = 0, 

since all other terms vanish identically because of the symmetry of the boundary 
conditions as in the corresponding case of the stationary equations. Hence (4.4) 
is solvable for an arbitrary choice of En. Because of the symmetry of (4.4) in 
$0) and ~ ( 1 0 )  the solutions 8 2 0 )  and W) are given by 

(4.5) 

P O )  = 2 C. Eric, exp {i(k, + k,) . r}F(k,. k,, z) ,  
n, m 

$1) = En exp {ik,. r}G(z). 
n J 

Using these solutions we obtain the solvability condition of the equation for 
e2v(30) + qv(21)  + y2v(lZ) by multiplying it with the functions vT and averaging. 
The following set of equations for the coefficients En results: 
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where M = (f *(a:, - a,")2f). The terms proportional to e2 originally are given by: 

e2( c { A  (kk * ~9 k, k,, k, * kk) + 2~ (kn k m ,  k m  k,, kk - k,)} 
k, 12, m 

x c,ck En, 6( - k, + k, + k, + kk) + (d20)M - R(20)) c,) (4.8) 

and have been rewritten by using the definitions (3.7). Since is equal to B 
according to solvability condition (3.8), do2) has to vanish. The system (4.7) of 
linear equations for the variables El has a solution if, and only if, the character- 
istic equation 

(4.9) 

is satisfied. (%,> is the hermitic matrix of the coefficients of 13, in the first two lines 
of expression (4.7). The values of d20) and dll) for which relation (4.9) holds 

(4.10) 
determine the growth rate 

since all lower order contributions vanish. The stationary solution v,  0 is stable 
if all possible values of u are less than zero. In  other words, the stationary solu- 
tion is stable if the matrix {a,,} is positive definite. 

Comparison of expression (4.7) with the equations (3.8), and the fact that the 
right side of the same equations can be written as derivatives of the function E', 
proves that the coefficients a,, are equal to the second derivatives: 

(T Fz ,2a(20) + sy&, 

Since a sufficient condition for the minimum of a function is that its first deriva- 
tives vanish and the matrix of the second derivatives is positive definite, we 
conclude: the function E assumes a minimum value under the side conditions qf 
constant amplitude for those functions among the class (2.12) which are stable 
stationary solutions of the equations (2.8) in the limit of small E and y .  

Among the disturbances considered there always exists one solution 

En = cyL> (4.12) 

which does not satisfy the condition 

x ( C , + 1 3 n ) ( c . n + E n )  = 1, (4.13) 

assumed in the formulation of the minimum principle. Since the disturbances can 
be represented as an orthogonal set, (4.12) is the only disturbance which does not 
satisfy (4.13). For this disturbance the relation (4.11) yields 

&@0) + vacll) = 2,52R(20) + eyR(11). 

Hence in addition to the minimum of the function E the condition 

(4.14) 

is necessary for the stability of the stationary solution. The minimum property, 
however, together with condition (4.14), is also sufficient for the stability of the 
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stationary solution when E is small enough. To prove this, we show in the appen- 
dix that it is sufficient to restrict the stability analysis to the special class of 
disturbances with ~ ( 0 0 )  = 0,  for which the minimum principle has been derived. 

The definition of the stability used in the preceding analysis has to berelaxed 
with respect to  disturbances of the special form: 

v" = 5aiv,  B =riaje, (4.15) 

where ri is a unit vector with arbitrary horizontal direction. These disturbances 
are exact solutions of (4.1) with cr = 0 and correspond to infinitesimal translations 
of the stationary solution v, 8. Because of the homogeneity of the problem with 
respect to the horizontal directions, all solutions produced by translations of a 

given solution, G; = G, exp {ik. d}, (4.16) 

with arbitrary constant b,  have identical properties. Neutral disturbances of the 
form (4.15) are the consequence. The minimum principle does not distinguish 
between solutions of the class described by (4.16), and it is appropriate to consider 
all solutions of this class as representing a single solution. 

5. Generalization of the minimum principle 
In the last sections we have demonstrated the minimum property of stable 

stationary cellular motion, using the problem (2.2) as a model. The conclusions, 
however, cover a much wider class of problems, since only the following general 
properties have been used. 

(i) The problem is homogeneous with respect to horizontal directions and the 
time. Hence the equations are invariant against translations and rotations with- 
in the horizontal plane. 

(ii) The linear part of the equation is separable with (2.10) governing the hori- 
zontal dependence. The solution of the linear problem therefore can be written 
in the form (2.12,13). There exists a minimum d u e  of the Rayleigh number for 
which stationary solutions exist and below which all solutions are exponentially 
decaying. 

(iii) For sufficiently small amplitude, the solution of the problem can be repre- 
sented by an expansion in powers of the amplitude starting with a solution of the 
form (2.12) for the linear problem. With the use of this representation any term 
in the equations can be written according to the properties (i) and (ii) as a sum of 
terms 

f k  )... )n,(z,kk, ..., k,)c, ... c,exp{i(kk+ ...+ kn).r). 

(iv) The functions f k , . . . , ,  depend only on the scalar products between the 
k-vectors, at least up to terms of the order considered. 

In the problem (2.2) the property (iv) is due to the vanishing of the vertical 
component of the vorticity. We have proved this fact restricting ourselves to the 
case of infinite Prandtl number. It has been shown in I, however, that the vertical 
component of the vorticity is of the order s3 or less. Hence the conclusions in the 
foregoing sections remain valid in the case of finite Prandtl number. 

The symmetry of the boundary conditions is not essential to the problem 
and has been introduced only to simplify the discussion. With the use of different 
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arguments the same results (3.3) can be obtained in cases with non-symmetric 
boundary conditions. An example is given in $6. 

In  the second part of this paper we shall take into account the temperature 
dependence of any material property. It will be shown that terms similar to the 
terms proportional to y in ( 2 . 2 )  are introduced. Hence the conclusions about the 
minimum property hold in this case as well as for the problem ( 2 . 2 ) .  In  contrast 
to the expansion in E the expansion in y is not essential for the conclusions and was 
introduced only to simplify the analysis. Since no explicit use of the homogeneous 
boundary conditions has yet been made, the conclusions also cover problems 
with finitely conducting boundaries, the action of surface tension, or any other 
boundary conditions as far as they correspond to the properties (i)-(iv). 

Many interesting extensions of the convection problem have been discussed, 
e.g. the convection in a rotating system, the influence of a magnetic field, and the 
effect of diffusion due to a concentration gradient between the boundaries of the 
layer. Nonlinear aspects of these problems have been considered by Malkus 
(1959), Veronis (1959, 1965) and Sani (1965). The diffusion of a substance in 
general introduces buoyancy forces similar to those due to temperature. Since 
the concentration is governed by an equation of the same form as the heat equa- 
tion, the properties (i)-(iv) and hence the minimum principle hold in this case. 
The same argument is valid in the case of convection with an applied homo- 
geneous vertical magnetic field. The vertical component of the curl of the Lorentz 
force, as well as the vertical component of the current density, is of the order 8 
and can be neglected. 

The minimum principle is not valid, however, for convection in a rotating 
system because the vertical component of the vorticity is of the order E .  The 
functions in the solvability conditions (3.6, 4.7) depend on A .  (k, x k,) as well 
as on k, . k, in this case. It has been shown by Kiippers (1966) that only the regular 
solutions among the class of semi-regular solutions are possible stationary solu- 
tions in this case. 

Pellew & Southwell (1940) noticed that the solution of the problem (2.9) can 
be expressed in terms of a variational principle. The Rayleigh number R(a) in this 
linear problem can be calculated as the minimum of the functional 

where w(l0’is an arbitrary function of the form (2.12), satisfying the relation (2.10) 
and the boundary conditions. Boo) is given by the absolute minimum of the func- 
tional (5.1). Chandrasekhar (1961) has used this property of the Rayleigh number 
in more general linear formulations of convection problems. 

In  analogy to the variational principle for the linear problem, a functional 
corresponding to the Rayleigh number can be formulated for the nonlinear 
problem in the approximation to which the equations have been considered: 
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This functional is defined for all functions v(l0) of the form (2.12) which satisfy 
the boundary conditions. For the present purpose we assume that the value a: in 
the relation (2.14) is replaced by the unspecified parameter a2 and that the func- 
tions on the right side of (5.2) are functions of a2, since their definition was inde- 
pendent of the special value a:. In the special case when v(l0) satisfies (2.9) with 
R equal to R(Oo), the relation 

E( .  . . , CP1 cl, . . .) _= p(d, v(10)) - R(v(1O))ddd (5.3) 
0 

holds, and R(e,v(lO)) is equal to the Rayleigh number for those solutions dlO) 
which satisfy the solvability condition. Using this fact we can reformulate the 
minimum principle. 

An arbitrary function of the form (2.12,13) corresponds to a stable stationary 
solution of the convection problem i f ,  and only i f ,  the integral 

/,“R(E, ~ ( ~ 0 ) )  ede 

assumes a minimum and 

is  positive, where e: is  a suficiently small constant equal to the convective heat $ux. 
In  the case when yB, vanishes, the minimum principle is equivalent to Malkus’s 

hypothesis of maximum heat transport at  a given Rayleigh number mentioned 
in the introduction. Since the minimum principle holds to the order e2 only, any 
physical quantity, described as an average property of the stationary solution, 
can be used as a physical interpretation of the parameter c2 as, for example, the 
kinetic energy of convection. The convective heat flux has been used since it 
corresponds to an experimentally measured quantity. 

aR(y(lO’1 I 8o 

6. Convection with temperature dependent material properties 
Without the Boussinesq approximation the description of convection in a 

fluid layer heated from below has to start with the general form of the Navier- 
Stokes equations: 

the continuity equation a 
-p+ajpuj = 0, 
at 

and the heat equation a 1 
-T+ujajT = -ajAajT. 
at P C P  

In  writing the last equation we have introduced the assumption that changes 
in the energy due to pressure fluctuations are small compared with changes due 
to temperature fluctuations. Representing the fluctuations by the static differ- 
ences of pressure and temperature between the boundaries we can formulate 
this assumption as the limit 

This limit also permits one to neglect the dissipation as a heat source in (6.3). 
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The equations (6.1)-(6.3) give a complete description if an equation of state is 
added. In  accordance with the limit (6.4) we neglect the pressure dependence of 
the material properties in comparison with the temperature dependence and 
assume in addition to (2.1) 

The volume viscosity Ti does not enter the problem because the term with F can 
be included in the pressure term. 

Because of the temperature dependence of the conductivity A, the solution for 
the static temperature distribution T, deviates from a linear dependence in z :  

In  the same way as in $ 2  we introduce non-dimensional variables and use the 
deviation 8 from the static temperature distribution T, in place of T.  It is con- 
venient to formulate the problem in terms of the dimensionless momentum 
vector wi = (p/p,)u,. Thus (6.1)-(6.3) assume the following form in the stationary 
case : 

I Awi + 8hi - aip = Pr-lvj+i + yo 8,wz - Y 3 (v, aj a,O + i?j(wiaj8)) 
R 

- Pr-ly0((z - zo) vjajwi + w,wi) + y1 S(z - zo) Ohi - 2 82hi 

+ y2(z - zo)Awi- fi R (OAw, + ajO(a,wj + ajw,)) + y2(a2wi + +uZ) + . .. , } (6.7) 

2+lj = 0, 

A8 + Rq A i  = wj a, 8 + y3(z - zo) A 8  - 3 (8A8 + aj q 8 )  + y3 28,s R 
+ ( 7 4  - 73) R( 2 - 20)  w, - yJ(z - zo) Qjaje + w,8) + . . . . ) 

In  order to simplify the notation we have introduced 

yo = a(T1-T2) and y1 = y = (b/a)(Tl-T2). 

Terms of the order yyyp as well as the quadratic temperature dependence of the 
material properties (6.5) have not been included explicitly in the equations (6.7). 
The solvability condition (3.6) shows that those terms produce a slight change in 
the critical Rayleigh number R,. They do not affect, however, the finite amplitude 
behaviour of the stationary solution and its stability to the order in which the 
equations will be considered. Since the momentum vector has been introduced 
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areformulation of the boundary conditions (2.4) is necessary. Using the continuity 
equation we obtain 

v8 = aava = 8 = 0 at  the rigid boundary, 1 (6.8) 
w, = 88{vz,J( 1 +yo z - yo 8/R)} = 8 = 0 at  the free boundary. 1 

There are four combinations of these conditions possible a t  the boundaries 

rigid '. 
The solution of (6.7), together with the four cases of boundary conditions, pro- 

ceeds in exact analogy to the problem treated in the previous sections. The 
expansion method differs only in the respect that y is replaced by the set yo, . . . , y4. 
In place of (2.11) we assume 

,. e -  - 5 8. We call these cases 'rigid-rigid', 'free-free', 'rigid-free', and 'free- 

p= 1 p = l  K = O  

and corresponding expressions for the other variables. The z-dependence f ( 2 )  of 
the solution ~ ( 1 0 )  has been calculated explicitly by Reid & Harris (1958) for all 
four cases of boundary conditions. The function &(z) in the case ' free-rigid' is 
given, of course, in terms of the function in the case 'rigid-free': frr(x) = frf( -2). 

To = T,(zo) (6.10) 

leaving zo undetermined. It is appropriate to choose the reference temperature 
To in such a way that the critical Rayleigh number does not depend upon the 
parameter y, to the first order. In  the case of symmetric boundary conditions, 
zo = 0 follows in accordance with the formulation of the problem (2.2). In the 
case of non-symmetric boundary conditions a non-vanishing co-ordinate zo will 
be determined in general. In  I it has been shown that R(10) vanishes for all four 
cases of boundary conditions. Hence we obtain the result that the first of the 
inhomogeneous equations analogous to (3.1) introduced by the expansion (6.9) 
is solvable for any solution ~ ( 1 0 )  of the form (2.12) with 

In  writing (6.7) we have assumed 

(6.11) 

The solution dZo) can be written in the form (3.4) and for vL1) expressions analo- 
gous to (3.5) are valid. By introducing those solutions into the inhomogeneous 
terms of the equations (6.7) in the following order the first quantitative result 
about R as a function of the stationary solution can be obtained. 

In  the same way the analogy to the problem (2.2) holds for the stability 
analysis. The equations for the disturbances follow from (6.7) by replacing w and 
8 by v + v" and 0 + 8, taking the part linear in v", & and adding Pr-lcrv" and a8 re- 
spectively on the right side of the resulting equations. Since we are interested in 
the value of cr only to the first non-vanishing order, it is justified to neglect the 
term @/at in the continuity equation and to assume for v", & the same boundary 
conditions (6.8) as for the stationary solution. With the introduction of the 

(6.13) 
expansion W 0 0 4  

v" = c € P - - q p )  + c c @-lyKEpl) + . . . 
p = l  , l c = 1  K = O  
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and corresponding expressions for 6 and c the stability analysis proceeds as out- 
lined in $4.  The only difference is of quantitative nature because terms with yK 
occur in the solvability condition (4 .7)  in place of terms with y ,  

Since all qualitative features of the problem can be discussed by means of the 
special case (3.2) we shall not write down the extensive equations and solvability 
conditions induced by the expansions (6.9) and (6.12). A detailed explicit de- 
scription is contained in 11. In the following section we shall derive explicit con- 
clusions from (3.8) and (4.7) regarding yB, as representative of a linear function 
P of the parameter yK which will be given in the next section. 

7. The hexagon solution 
In  $ 3 we have described the special class of semi-regular stationary solutions 

excepting the case in which an angle of 60" exists between any two k-vectors. In 
general, the solvability condition (3.8) reduces with R(ll) = 0 to the case for which 
y = 0 unless two k-vectors k,, k, occur with 1 k,  + k,] = a, and non-vanishing 
coefficients c,~, c,. The terms proportional to y2 can be disregarded in this respect 
since they cancel with R(O2) = D identically. 

When two such k-vectors do oeeur, a non-vanishing coefficient ck has t o  corre- 
spond to the vector k, = - k,  - k, and all three coefficients c,, c,~, c, must have 
equal absolute value. These conditions and the further restriction 

c,c,c, = C n C m C k  (7.1) 
follow from (3.8) for 1 = n, m, k. Without losing generality we can assume that two 
of the coefficients, say c, and c,, are real and positive, since this result always can 
be obtained by a translation of the origin r' = r - r,: 

ck = c, exp (ik,. r,,], ck = c, exp (ik, . ro). (7.2) 

According to condition (7.1) the third coefficient has to be real as well. The two 
possible signs of the term (7.1) correspond to two different solutions, since (7.1) is 
invariant against translations. 

The simplest configuration with an angle of 60" between two k-vectors leads 
to the hexagon solutions 

3 1  3 

p) H -  = + c - exp (ik,. r} f ( x )  with C k, = 0, (7.3) 
n=-3 4 6  n= 1 
n10 

which describe convective motions in the form of periodic hexagonal cells. As- 
suming thatf(z) has a positive sign we replace the sign & in (7.3) by the symbol 
sH which depends on the direction of the motion in the centre of the cell: 

f + when the motion in the centre is upward, 'I (7.4) 
sH = 1 - when the motion in the centre is d0wnward.j 

The general solution with non-vanishing R(ll) can be written as superposition 
of solutions which result from solutions (7.3) by rotation and translation. We 
shall, however, restrict the further discussion to the hexagon solutions since it 
can be shown-a detailed analysis is contained in 11-that the superpositions 
are unstable. 
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We close the discussion of the solvability condition for the stationary solution 
by presenting numerical values for the function L( 4) in table 1 which now includes 
the terms proportional to the inverse of the Prandtl number. Ll(q5) is a constant: 

Ll(4) = L( - 1) .  (7.5) 
The values for the cases with symmetric boundary conditions have been taken 
from I. In the ‘free-rigid ’, ‘rigid-free’ cases respectively, the terms depending 
on the inverse of the Prandtl number have been neglected, since it can be antici- 
pated that they are of the same order of magnitude as in the symmetric cases. 
This simplification also has been used in the calculation of the values of R,‘ll) in 
the case of the hexagon solutions, 

which are given in table 2. The terms proportional to the inverse of the Prandtl 
number for cases with a rigid boundary will be approximately equal to those in the 
‘ free-free’ case. It is worth mentioning that the functions v>l) do not have to be 
computed for the calculation of RK(1l) because the integrals involving ~ $ 1 ~ )  can be 
transformed by partial integration into integrals containing dZo) and yK instead. 

RK(1’) = sH P,, (7-6) 

‘Freerigid’ and 
‘ Free-free ’ ‘ rigid-free ’ ‘ Rigid-rigid ’ 

L ( -  1) 0.5 0.60167 0.69203 
+ 0.OPr-1 + 0.0Pr-1 
+ 0.0Pr-2 + O.OPr-2 

L( - 6) 0.2596 0.28774 0.29381 
+ 0.08654Pr-1 + 0.06842Pr-1 
+ 0 . 0 5 7 6 9 P ~ ~  + 0.06003Pr-2 

+ 0.06343Pr-1 + 0 * 0 4 2 3 2 P ~ - ~  
+ 0-03806Pr-2 + 0.05947Pr-2 

+0.0198Pr-l + 0.00833Pr-1 
+ 0.0108Pr-2 + 0 . 0 3 7 6 2 P ~ ~  

- 0.00944Pr-1 
+ 0.01665Pr-2 

TABLE 1. The function L($)  for different boundary conditions 

0.10571 0.10838 0.08317 L(0) 

L(B) 0.0242 0.03051 0.00486 

L(1) 0 0.02551 0.01479 

‘Freerigid ’ and 
‘ Free-free ’ ‘ rigid-free ’ ‘Rigid-rigid ’ 

P o  1.591 - 0.1258Pr-1 2.142 2.676 

p 2  2.177 +0.0Pr-l 2.452 2.755 
p a  2.010 - 0.5023Pr-1 2.416 2.917 

P I  - 4.522 - 0.5023Pr-1 - 5.651 - 6.603 

p 4  - 4.271 + 0.2512Pr-1 - 5.190 - 6.229 

TABLE 2. The values P, 

Since the equations (2.8) for the model case discussed in $5  3 and 4 follow from 
(6.7) with Pr = CQ, yo = yz  = y3 = y4 = 0, the value B, is given by 

In general yBo has to be replaced by a linear function P of the parameter y,. 
B, = (3/2)*P,. 
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It is convenient to choose P equal to the sum of the terms yKPK. Hence, the re- 
placement is formally expressed by 

The dependence of the Rayleigh number on the amplitude to the order which 
has been considered is given by 

4 
R - R c -  - c ~ R ( ~ ~ )  + B 2 yK R:'). (7.8) 

K =  0 

Since the values of R@O) are always positive, the hexagon solutions have the 
special property that values of R below the critical value R, depending on the 
sign of P are possible. The stability analysis in the next section will give the result 
that s,P has to be negative for the stable hexagon solution. 

In  addition to the values of R(20) given in I we note the values for the case of 
mixed boundaries with infinite Prandtl number : 

rolls : C I C l  = &, 
Rg0) = 0.61442; 

square cells: clC1 = c2C2 = $, 
REo) = 0.71643; 

hexagons: clCl = c2C2 = c3C3 = $, 1 

Rg') = 0.81809. 

Since the convective heat transport H = ( ~ ~ 0 )  is given by e2 according to the 
normalization (2.17) the dependence of the heat flux on the Rayleigh number 
can be derived easily from (7.8). 

8. The exchange of stability between hexagons and rolls 
It has been shown in I that for small amplitudes E the only stable solution of 

(6.7) in the case when all yK vanish is the two-dimensional solution which corre- 
sponds to a convective motion in the form of rolls. In  this section we investigate 
how this result is modified when the temperature dependence of the material 
properties is included. We base the discussion on the equations in § 4 regarding y 
as representative for the set y K  and use the function P defined in (7.7) in the 
explicit results. 

We consider first the class of stationary solutions for which the coefficients 
c, or G, vanish whenever (k,+&( = a,. It can be shown that those solutions, 
including the two-dimensional solution, are unstable for sufficiently small ampli- 
tudes. Let us consider the following special disturbance of the form (4.3) 

$0) = c" P P  v + E-,v-, with k, + k, + k, = 0, (8.1) 

where k, is an arbitrary k-vector corresponding to a non-vanishing coefficient 
c, of the stationary solution. A disturbance of the special form (8.1) is possible 
because Ep and E-, multiplied by a non-vanishing term appear only in the equa- 
tions I = p, --g of the general solvability condition (4.7). These two equations 
have the following form in the case of the two-dimensional solution with m = 1 

41 Fluid Meoh. 30 
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when the expression for R(20) given by equations (3.8) and the relation (7.7) is 
taken into account: 

0 = ( M a +  L,E~)~"_,+ JSEPC~C,,. -,'I 0 = (Ma+L2€2)Ep+ &PC c" 
(8.3) 

To simplify the notation we have introduced 

L, = L(+)+L(-*)-@(l)  (8.3) 

and used the approximate relation 

since terms of higher order will be neglected. 

tions determines the two roots 
The solvability condition for the system (8.2) of two linear homogeneous equa- 

aM = - L2c2 1/3 EP. (8.5) 

Two additional roots for which the same relation (8.5) holds are obtained when m 
is chosen equal to - 1. Those four roots are the only ones of the general charac- 
teristic equation (4.9) in which a term proportional t oy  or P respectively appears. 
Hence the two-dimensional solution is unstable for 

€ <  ER 4 3  Ip]/Lz, (8.6) 

but stable for amplitudes above this value. 
The other solutions yield expressions similar to (8.5) for the disturbances of the 

form (8.1).  This does not affect, however, the result of I ,  that they are unstable 
anyway as long as there is no angle of 60" between two of their k-vectors, because 
for the class of disturbances considered in I the argument of the &function in 
(4.7) never vanishes. 

We turn now to the case when an angle of 60" occurs between two k-vectors 
corresponding to non-vanishing coefficients c,. In  the last section we chose the 
hexagon solutions as representative of this class of stationary solutions. The 
characteristic equation (4.9) for these solutions reduces to the following equations, 
since all matrix elements a,, with In1 > 3 or 111 > 3 vanish unless n = I: 

det 

a M + e  b b b+Ps, b+PSH e 

b a & + e  b b+PSH e b + Ps, 
b b aM+e e b + Ps, b + Ps, 

b+Ps, b+PsH e a M + e  b b 

b+P8H e b+PSH b a M + e  b 

e b+Ps, b+P8, b b aM+e  

= 0 (8.7) 

and for IZI > 3 
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As abbreviations we have introduced 

(8.9) 
e = +e2(L( - 1) + frL( 1)) - ePsH, 

b E +e2(L( - 1) +L(+) +L( - 4)). 
The following six growth rates are determined as zeros of equation (8.7). The 
range in which they are positive has been indicated under the assumption that sII 
and P have opposite signs: 

1 

v,M = g6M = 0. I 
The other possibility s,P > 0 can be disregarded since it leads to a solution 
which always is unstable according to the fourth growth rate in (8.10). 

The growth rates given by (8.8) do not lead to instability as long as s,P is 
negative. This fact holds even for vanishing P and has been proven in I1 using 
the concave dependence of the function L($) on $. Hence the range of stability 
for the hexagon solutions is determined by ea and eB. Unlike the hexagon solu- 
tion only one form of convection corresponds to the two-dimensional solution 
since a change of the sign leads to the same but translated solution. Thus there 
are three possibly stable convective motions, the stability regions of which are 
indicated in figure 1. 

E 

\ 
Rolls 

E 

/--- 

c 

Hexagons, 
downward motion 
in the centre in the centre 

I 1 P 
FIGURE 1. Regions of stability for the three possible convective motions. The scale 

corresponds to the case ‘rigid-rigid’ with Pr = co. 
41-2 
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A more physical picture is given in figure 3 where the dependence of the ampli- 
tude on the hyleigh number has been plotted qualitatively. The curves are 
parabolas to the approximation in which the problem has been analysed and the 
Rayleigh numbers corresponding to cA, cB, ex are given by 

(8.11) 

f RA R, R, RB 
I 

FIGURE 2. Qualitative skotch for the dependence of the amplitude on the Rayleigh number 
for rolls and hexagons with the boundaries of stability RA,  RR, I zg .  

When the Rayleigh number is slowly increased the convection starts growing 
at  the critical Rayleigh number and settles a t  the finite amplitude value of the 
stable stationary hexagon solution. At Rayleigh number R,, the hexagonal 
convection pattern becomes unstable. The growing disturbances transform the 
hexagon solution into rolls, corresponding to one of the three k-vectors, k,, k,, k,. 
This fact follows from the form of the disturbances belonging to the growth 
rates u2 and v3 and has been shown in the experiment by Silveston (1958). 

With decreasing Rayleigh number the transition from rolls to hexagons occurs 
at  R, and the convection decays after R = R, has been passed. The fact that the 
convection at  a certain Rayleigh number depends on the way in which the Ray- 
leigh number has been reached is called the hysteresis effect. 

The exchange of stability between the three possible cellular motions, when P 
is varying at  approximately constant Rayleigh number, has been observed by 
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von Tippelskirch (1957). In his experiments with tobacco smoke aerosol, the 
condensation of water vapour provided an additional heat transport by diffusion 
with strongly decreasing temperature dependence. Hence hexagons with upward 
motion in the centre were observed. When the water droplets slowly disappeared 
the convection turned into the form of rolls and later into hexagons with down- 
ward motion in the centre, which is characteristic for gases. 

9. Concluding remarks 
The stability analysis in the last section has shown that the temperature de- 

pendence of all material properties has to be taken into account for the determina- 
tion of the physically realized convective motion at  small amplitudes. Three 
forms of convection are possibly stable. Two of these correspond to a hexagonal 
cell pattern and are mirror images of one another, with respect to the middle plane 
of the layer, when the boundary conditions are symmetric. The mirror image of 
the third possible solution describing convection in the form of rolls leads to the 
same but translated solution. These symmetry properties are reflected in the 
stability analysis. At small amplitudes, when the inhomogeneities of the layer 
due to the temperature dependence of the material properties become important, 
the convection in hexagonal cells is preferred. When the conditions are suffi- 
ciently symmetric, rolls-the simplest form of convection-are realized. It has 
been shown in I1 that non-symmetric boundary conditions can lead to a prefer- 
ence of hexa,gons at  higher amplitudes. Several authors have concluded the pre- 
ference of the hexagons taking into account the temperature dependence of 
viscosity only; see Palm & 0iann (1964) and Segel(l965) and their references to 
earlier work. The stability of the hexagon solutions was first shown in 11. Heat 
sources in the fluid and time dependent temperatures at  the boundaries have not 
been considered in the present work. Eilrishnamurti (1967) has shown that in these 
cases also hexagons are preferred. 

According to the stability analysis two solutions may be stable at  the 
same given situation and the initial conditions may determine which solution 
is realized. This hysteresis effect: is in agreement with the minimum principle 
because the function E may have more than one minimum. The absolute 
minimum, however, together with the condition (4.14) ensures the stability of 
the corresponding solution. 

No stable stationary convection with amplitude less than eA is possible. This 
fact raises the question of which kind of convection is realized when the heat flux 
corresponding to an amplitude in the unstable range is prescribed. The problem 
has been analysed in another paper, Busse (1967a), with the result that convec- 
tion with periodic time dependence can occur in this situation. 

Throughout this work we have assumed that the wave-number a of the sta- 
tionary solution is equal to a, which corresponds to the lowest possible Rayleigh 
number of the linear equations. The discussion in the appendix indicates that 
there exists for any stable solution a finite region of possible wave-number a in 
the neighbourhood of a,. Because the width of this region is of the order B ,  the 
corresponding solutions differ only by terms of higher order than those considered 
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in this work. At higher Rayleigh number, however, the dependence of the solu- 
tions on the wave-number becomes an interesting problem. In the special case 
of two-dimensional convection, it has been studied in a recent paper (Busse 
1967 b ) .  We refer to this paper also with respect to the question of how far the 
approximation used in the present work gives a good representation of the solu- 
tion. The analysis of that paper shows that the influence of the terms propor- 
tional to em with n > 2 is small unless R exceeds the order of two or three times the 
critical value. The expansion with respect to the parameter yK is similar-at least 
for the linear problem-to a method used by Chandrasekhar (1961, pp. 309-13) 
in the stability analysis of circular Couette flow. Chandrasekhar shows that the 
second-order results give a remarkably close approximation to the exact solu- 
tion even for values which correspond to values yK of the order one. 

The author is indebted to Professor A. Schluter who introduced him to the 
problem of cellular convection. 

Appendix 
In  $ 4  we have restricted the stability analysis to disturbances with d o O )  = 0. 

Disturbances with a(OO) > 0 cannot exist when the basic wave-number a of the 
stationary solution is equal to ac. We must show, however, that disturbances 
with d00) < 0 do not alter the conclusion of $ 4  when Idoo)/ becomes of the order 
€2 or ey. It is convenient to neglect doo) in this case in the lowest order of (4.1) and 
to consider it in the same order as e2d20) + eya(11). We recapitulate the stability 
analysis of $ 4  using instead of (4.3) the more general expression 

$0) = c" .$ (A 1)  P P' 
q 

where the set of functions 

represents the system of solutions of (2.9) for R = R( 1kqI2). We use the symbol A 

to distinguish the present analysis from the special case treated earlier in which 
the vectors k satisfy the second condition in (2.14) in addition to the first. Since 
B o o )  is defined as the minimum of R(a) we can use as an approximation 

oq = exp{i&,.r),f(l&,I,z) (A 2) 

R M R(O0) + v( I&,1* - a:), (A 3) 
with a positive constant 7. 

In  analogy to (2.16) the set of functions 

8,. = exp{-ifrP.r>,f*(1&,12,z), (A 4) 

is defined as the system of solutions of the adjoint problem to (2.9). 
The analysis of (4.1), in which the expansions (3.11) and (4.2) have been in- 

serted, proceeds in the same manner as in the special case discussed in $4. By 
multiplying the equation for 

= @O) + &(20) + yE(11) + ~26(30) + . . . 
with 0; and averaging, we obtain the solvability condition represented by a set 
of homogeneous equations with running index p for the coefficients Cq of C(l0). 
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In the order E ,  y of these equations we have to conclude d l O )  = dol) = 0 as in 
(4.5) because of the symmetry of the problem. A non-trivial set of equations 
similar to (4.7) is obtained in the order e2, ey, y2 .  As in (4.9) the condition for the 
solvability of this set of equations can be expressed by 

(A 5 )  det ~~~q+[8 .2M+r(~kq~2-a ."c)2] l s ,q~ = 0 ,  

{&} is the matrix of the coefficients of EQ corresponding to the matrix {a,,}. As 
{al,} it is hermitic and contains only terms of the order e2, ey. Since do2) is vanish- 

(A 6) ing as in $4, 8 r ( 0 0 )  + $ g ( 2 0 )  + Eyg(ll) 

is identical with the growth rate CT in the approximation in which the problem will 
be considered. The term proportional to 7 in (As )  represents the fact that we are 
using the more general set of functions (A2) rather than (2.13). 

For simplicity let us assume that only a finite number, say 2 N ,  of the coeffi- 
cients c, of the stationary solution are different from zero. Let {kn, In\ < N }  be 
the set of vectors k, corresponding to these coefficients. By adding all vectors kk 
with k,. k, = $a: as far as they do not yet belong to the set, we obtain the en- 
larged set {k,, In] < N*}  with N* < 3N. In  this notation the matrix elements 
a,, are vanishing unless n = I or In1 < N* and 111 6 N*.  Hence (4.9) can be re- 
written as 

with the submatrix {a;,} of {a,,} defined by 

det [ai,+5:M6,,l [azl+ 5H] = 0, (A 7) 

at, = al, for Ill,  In\ < N*.  (A 8 )  

IZI>N* 

5 is an abbreviation for e2dZo) + eydll). Equation (A 3) can be rewritten in a simi- 
lar form. Since the non-diagonal elements aPg vanish unless the relation 

-k&,+k,+k, = 0,  or -k,+k,+k,+k, = 0, 

with Inl, Ikl < N*,  is satisfied, the elements tipipp withp $: q can be different from 
zero only if kp and k, belong to the same subset of vectors k 

{k,+d, In\ < N*} ,  (A 9) 

where d is a constant vector. Let us denote the submatrix of {apQ}, where this 
condition is satisfied, by {&in(d)}. Then the left side in (A3) can be written as a 
product of terms of the form 

det I&i,(d) + ( 3 M  + q(k,. d + I dJ 2)2) &,,I, 
and the remaining diagonal elements 

a,, + SM + r( 1 ks, I - (A 11) 
(A10) becomes identical t.0 the first term in (A7) when d = 0. Similarly, there 
exists for any term ( A l l )  a corresponding term among the factors in (A7) to 
which it reduces when Id/, ]kBl -a,-+O. This correspondence shows that the 
values 8 determined by (A5) differ from the values 5 given by (4.8) or (A7) re- 
spectively by terms of the order .@Id\, ~yldl  and ldl2. The latter terms are pro- 
portional to 7 and give a negative contribution to the growth rate 8. Hence the 
values 8 are negative for arbitrary vectors d, when the corresponding value 5 is 
negative and E is sufficiently small. 
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The case 8 = 0 needs special consideration. In  § 4 it  has been shown that there 
exists for any stable stationary solution a class of disturbances given by 

- .  
C ,  = 2 . ~ ~ 7 ' .  k,, 

with (T = 0. Using the property 
(A 12) 

i3jn(d) = %-*,-l( - d), (A 13) 
of the matrix (&) we show that the corresponding values B are negative. By 
multiplying the matrices occurring in the expressions (A 7) and (A 10) with the 
eigenvector (A 12) of a;, we obtain 

M B  C EnFn = - 7 2 (If, I - a:)2 E,LEfi - 3 (&in - uin) EIEn 
n n 1, n 

= - 7 C (2d. k, + Id[ ')'(T. k,)'C,C, - C bin. dZIEfi + . . ., (A 14) 
n 1.n 

where bin is defined as the gradient of a;, with respect to d at d = 0. The dots 
indicate terms proportional to Id/' and higher powers of Id\. The summation is 
extended over the range 0 < In/, 111 < N*.  Any disturbance of the form (A 12) 

c, = c+. has the property 

Disturbances corresponding to other growth rates do not have this property in 
general, although to any growth rate there exists always at  least one disturbance 
satisfying (A 15). Using (A 15) and (A 13) we find 

(A 15) 
- i i  

and conclude that 6 is negative, since the first term on the right side of (A 14) is 
of the order Id12 and negative and cannot be balanced by the following terms as 
long as E is sufficiently small. 

From the last statement we have to except one single case. For the two- 
dimensional solution with N = 1 the first term on the right side of (A 14) is pro- 
portional t o  /dl4 when k,d = 0. Hence 6 may become positive due t o  terms of 
the order s21d12. (Terms of the order ey do not enter the expression for 3.)  In  this 
case, however, the two-dimensional solution with lk,12 = a:+ 5, 5 > 0 will be 
stable provided the two-dimensional solution is stable with respect to the dis- 
turbances discussed in $4. The form 

- &{(5+ 2k. d + [d 1 2 ) 2  + (5-  2k,. d + ld(2)2 - 257 
of the first term on the right side of (A 14) shows that (T is negative for 

5 > a18. (A 16) 
The possibly positive contribution of this term in the case of other disturbances 
does not lead to instability as long as an inequality of the form 

is satisfied. Relations (A 16) and (A 17)) with appropriately chosen positive 
constants a1 and a2 can be satisfied for sufficiently small E .  In  order to make the 
analysis applicable to the more complex cases mentioned in $ 5 we have used only 
qualitative arguments. In  the special case treated in I the terms of the order 
s21dI2do not lead to instability and the two-dimensional solution is stable for 

5 2  < a'E2, (A 17) 

lkll = %. 
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